If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+16z+11=0
a = 4; b = 16; c = +11;
Δ = b2-4ac
Δ = 162-4·4·11
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{5}}{2*4}=\frac{-16-4\sqrt{5}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{5}}{2*4}=\frac{-16+4\sqrt{5}}{8} $
| 4(x^2)+7x-6=0 | | b-b/4-16=-4 | | Z+{z-6}-2=-10 | | 7x-16=-3 | | 8-3c=7c+8 | | 5/9=5/x | | 10-(2x-6)=6(x-4) | | x-(1/4)(12-x)=x+3(4-x)-2x | | 21=1/3x+10+2 | | (5x)°+(5x)°+(8x)°=180° | | 5(1+5a)=-95 | | 2x-5(x-4)=-9+4x-6 | | -(2x)^2+1=-3 | | -11a+16a-100=15 | | -4(6+2v)=64 | | 4+5a=36 | | 5+4x-2^2=0 | | 1/3y+2=-9 | | 3(2x-5)-3x=2(x-7)+1 | | X2+7x+10=0 | | 16/5x=4/5 | | 2x^2-3x=23 | | 3x/x+5+1/1-2=7/x2+3-10 | | 3x+2(2x-7)=3+7x | | 7p+9=6p+11 | | -4x+8=2x+2 | | -16.5-3.5z=5(6z-8) | | 6x+1.4=2.9 | | 34y-y+11=110 | | v*9=8 | | 5x+4+125=27x-3 | | 120+0.20x=40+0.70x |